systematic uncertainty - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

systematic uncertainty - перевод на русский

IN INFORMATION THEORY, THE SUM OF THE TEMPORAL AND SPECTRAL SHANNON ENTROPIES
Hirchman uncertainty; Hirschman uncertainty

systematic uncertainty      

математика

систематическая неопределенность

measurement uncertainty         
PARAMETER CHARACTERIZING THE DISPERSION OF QUANTITY VALUES OF A MEASURAND
Measurement Uncertainty; Measuring uncertainty; Uncertainty of measurement; Type B evaluation of uncertainty; Type A evaluation of uncertainty; Interval of uncertainty; Measurement uncertainties

общая лексика

погрешность измерения

interval of uncertainty         
PARAMETER CHARACTERIZING THE DISPERSION OF QUANTITY VALUES OF A MEASURAND
Measurement Uncertainty; Measuring uncertainty; Uncertainty of measurement; Type B evaluation of uncertainty; Type A evaluation of uncertainty; Interval of uncertainty; Measurement uncertainties
интервал неуверенности.

Определение

uncertainty principle
¦ noun Physics the principle, stated by Werner Heisenberg, that the momentum and position of a particle cannot both be precisely determined at the same time.

Википедия

Entropic uncertainty

In quantum mechanics, information theory, and Fourier analysis, the entropic uncertainty or Hirschman uncertainty is defined as the sum of the temporal and spectral Shannon entropies. It turns out that Heisenberg's uncertainty principle can be expressed as a lower bound on the sum of these entropies. This is stronger than the usual statement of the uncertainty principle in terms of the product of standard deviations.

In 1957, Hirschman considered a function f and its Fourier transform g such that

g ( y ) exp ( 2 π i x y ) f ( x ) d x , f ( x ) exp ( 2 π i x y ) g ( y ) d y   , {\displaystyle g(y)\approx \int _{-\infty }^{\infty }\exp(-2\pi ixy)f(x)\,dx,\qquad f(x)\approx \int _{-\infty }^{\infty }\exp(2\pi ixy)g(y)\,dy~,}

where the "≈" indicates convergence in L2, and normalized so that (by Plancherel's theorem),

| f ( x ) | 2 d x = | g ( y ) | 2 d y = 1   . {\displaystyle \int _{-\infty }^{\infty }|f(x)|^{2}\,dx=\int _{-\infty }^{\infty }|g(y)|^{2}\,dy=1~.}

He showed that for any such functions the sum of the Shannon entropies is non-negative,

H ( | f | 2 ) + H ( | g | 2 ) | f ( x ) | 2 log | f ( x ) | 2 d x | g ( y ) | 2 log | g ( y ) | 2 d y 0. {\displaystyle H(|f|^{2})+H(|g|^{2})\equiv -\int _{-\infty }^{\infty }|f(x)|^{2}\log |f(x)|^{2}\,dx-\int _{-\infty }^{\infty }|g(y)|^{2}\log |g(y)|^{2}\,dy\geq 0.}

A tighter bound,

was conjectured by Hirschman and Everett, proven in 1975 by W. Beckner and in the same year interpreted as a generalized quantum mechanical uncertainty principle by Białynicki-Birula and Mycielski. The equality holds in the case of Gaussian distributions. Note, however, that the above entropic uncertainty function is distinctly different from the quantum Von Neumann entropy represented in phase space.

Как переводится systematic uncertainty на Русский язык